Lộ trình Học máy

Hướng dẫn từng bước để trở thành một nhà phát triển Nhà phát triển Học máy.

Quay lại trang chủ

Chú giải

Đề xuất
Lựa chọn thay thế
Tùy chọn

1 Mathematical Foundations

Linear Algebra

Scalars, Vectors, Tensors
Matrix Operations
Eigenvalues & Eigenvectors

Calculus

Derivatives & Chain Rule
Gradient, Jacobian, Hessian

Statistics & Probability

Basics of Probability
Bayes' Theorem
Types of Distribution

2 Programming Fundamentals

Python

Basic Syntax
Data Structures
OOP

Essential Libraries

Numpy
Pandas
Matplotlib & Seaborn

3 Data Preprocessing

Data Collection & Cleaning

Data Formats
Data Cleaning

Feature Engineering

Feature Scaling & Normalization
Dimensionality Reduction

4 Supervised Learning

Linear Regression
Logistic Regression
Support Vector Machines
Decision Trees & Random Forest
Gradient Boosting Machines

5 Unsupervised Learning

Clustering

K-Means
Hierarchical Clustering
DBSCAN

Dimensionality Reduction

PCA
Autoencoders

6 Deep Learning

Neural Network Basics

Perceptron, MLP
Backpropagation
Activation Functions

Deep Learning Libraries

TensorFlow
PyTorch
Keras

Deep Learning Architectures

CNNs
RNNs
Transformers

7 Model Evaluation

Evaluation Metrics

Classification Metrics
ROC-AUC
Confusion Matrix

Validation Techniques

K-Fold Cross Validation
LOOCV

8 Advanced Concepts

Natural Language Processing (NLP)

Text Preprocessing
Embeddings
Attention Models

Reinforcement Learning

Q-Learning
Deep-Q Networks

Hãy truy cập các lộ trình liên quan sau và tiếp tục học hỏi