Lộ trình Học máy
Hướng dẫn từng bước để trở thành một nhà phát triển Android.
Hỏi AI về Lộ trình Học máy
Chú giải
Đề xuất
Lựa chọn thay thế
Tùy chọn
1 Mathematical Foundations
Linear Algebra
Scalars, Vectors, Tensors
Matrix Operations
Eigenvalues & Eigenvectors
Calculus
Derivatives & Chain Rule
Gradient, Jacobian, Hessian
Statistics & Probability
Basics of Probability
Bayes' Theorem
Types of Distribution
2 Programming Fundamentals
Python
Basic Syntax
Data Structures
OOP
Essential Libraries
Numpy
Pandas
Matplotlib & Seaborn
3 Data Preprocessing
Data Collection & Cleaning
Data Formats
Data Cleaning
Feature Engineering
Feature Scaling & Normalization
Dimensionality Reduction
4 Supervised Learning
Linear Regression
Logistic Regression
Support Vector Machines
Decision Trees & Random Forest
Gradient Boosting Machines
5 Unsupervised Learning
Clustering
K-Means
Hierarchical Clustering
DBSCAN
Dimensionality Reduction
PCA
Autoencoders
6 Deep Learning
Neural Network Basics
Perceptron, MLP
Backpropagation
Activation Functions
Deep Learning Libraries
TensorFlow
PyTorch
Keras
Deep Learning Architectures
CNNs
RNNs
Transformers
7 Model Evaluation
Evaluation Metrics
Classification Metrics
ROC-AUC
Confusion Matrix
Validation Techniques
K-Fold Cross Validation
LOOCV
8 Advanced Concepts
Natural Language Processing (NLP)
Text Preprocessing
Embeddings
Attention Models
Reinforcement Learning
Q-Learning
Deep-Q Networks